

Topic Test 1 Mark Scheme

Circle theorems - Higher

Q	Answer	Mark	Comments
		[
1	45°	B1	
2	65°	B1	
3	DAB = 60 + their answer from Q1 or 105	B1	
	75	B1ft	ft their answer from Q1

4	<i>ABC</i> = 62	B1	
	Opposite angles in a cyclic quadrilateral add up to 180	B1	ое
	AOC = 124	B1	
	Angle at centre = twice angle at circumference	B1	ое

5	BOC = 180 - 2x or $BOA = 180 - 2y$	B1	
	Isosceles triangle and angle sum of a triangle = 180	B1	
	AOC = 360 - (180 - 2x + 180 - 2y)	M1	
	360 - 360 + 2(x + y) = 2(x + y)		

6	ACD = 57	B1	
	Angles in same segment (are equal)	B1	
	DEC = 57 seen or implied	B1	180 – (57 + 57)
	66	B1	

Q	Answer	Mark	Comments
	1	I	[
7	<i>OBD</i> = 90 or <i>OCD</i> = 90	B1	
	<i>BOC</i> = 120	B1	
	<i>AOC</i> = 60	B1	
	$OA = OC$ so OAC and $OCA = (180 - 60) \div 2$, all angles are equal (60) so equilateral	B1	