Topic Test 1 Mark Scheme Circle theorems - Higher

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ 45° B1
 $\mathbf{2}$ 65° B1 | | |

3	$D A B=60+$ their answer from Q1 or 105	B1	
	75	B1ft	ft their answer from Q1

4	$A B C=62$	B1	
	Opposite angles in a cyclic quadrilateral add up to 180	B1	oe
	AOC $=124$	B1	
	Angle at centre $=$ twice angle at circumference	oe	

5	$B O C=180-2 x$ or $B O A=180-2 y$	B1	
	Isosceles triangle and angle sum of a triangle $=180$	B1	
	$A O C=360-(180-2 x+180-2 y)$	M1	
	$360-360+2(x+y)=2(x+y)$		
6	$A C D=57$	B1	
	Angles in same segment (are equal)	B1	
	$D E C=57$ seen or implied	B1	$180-(57+57)$
	66	B1	

Q	Answer	Mark	Comments
7	$O B D=90$ or $O C D=90$	B1	
	$B O C=120$	B1	
	$A O C=60$	B1	
	$O A=O C$ so $O A C$ and $O C A=(180-$ $60) \div 2$, all angles are equal (60) so equilateral	B1	

